CSC 280 Introduction to Computer
Science: Programming with Python

Lecture 1

Prot. Be1 Xiao
Fall, 2014

American University

Logistics

Lectures: Mon, Wed & Thur, 1145am-1pm
Personnel: Instructor: Bel Xiao
TA: Alex Perepechko

Ber: SCAN 110 Wed 4-5:30pm or by
appointment.

Alex: SCAN 160, Monday 3:30pm-4:30pm

Logistics

* Blackboard: Homework posting & submission,
announcements, lecture notes, discussions,
grading.

* Course webpage: course Info, organization,
reading assignments, lecture notes.

* http://nwo08.american.edu/~bxiao/CSC280/
CSC280 Fall2014.html

Grades

Programming homework's: 50%

— You are allowed to have one homework late but no more than 48 hours.

— Any other late homework will be reduced 50% it submitted within 48 hours.
— After that, zero credit.

— Discussion 1s allowed in homework, but you must declare your collaborator.

— Please follow Homework format to turn in your homework. Homework
must be submitted via the Blackboard system. Submitting via email is not
accepted.

Two mid-term exams (open book, open source, but no discussion). One
around mid October and Before Thanksgiving. 20%

In-class quizzes: 10%. I will keep a note who answered questions.
Final project: creative problem solving. 20%

Cheating means copying lines of code. Only high level discussion 1s
allowed.

Textbooks

e Textbooks:

How to think like a computer scientist: learning Python,
Allen Downey (required)

Introduction to Computation and Programming Using
Python, MIT Press, John Guitag.

e Tutoral:

Official Python Tutorial, by Guido van Rossum

Course Objectives

Prepare students with little pro§rammln experiences
to be able to write small and midsized code to solve

problems.
Being able to read other people’s code and software.

Being able to map a problem into a computational
framework

Prepare students for further engineering, scientific,
and other technology courses

Position students to compete successfully for interns
and summer jobs.

Having tun!

Course Outline (tentative)

Python Basics (Sep- Mid October)

— Syntax, Control Flow.

— Basic Data Structure

Object-Oriented and Functional Programming (mid October — early
November)

— Classes and objects

— Inheritance

Python for Algorithmic problem solving and other goodies (early
November to mid December)

— Simulation and Random Walk.

— Data analysis and plotting

— Recursion

— Sorting, Searching, memorization
— Basic Text Processing with Python
— Python API

What is computer science?

* Problem-solving: puzzles, search, optimization,
calculation beyond pencil and paper, storing
information, retrieving information, tedious daily
tasks one 1s too lazy to do, controlling robots....

* Algorithm: a step by step list of instructions for
solving ANY INSTANCE of the problem might

rise.

* Abstraction: separate logical and physical
perspectives

Logical vs. Physical Perspective

* Driving the car
— Logical perspective
of the automobile
— also called “intertace”
— User opereates

* Repairing the car
— Physical perspective
— Control the
low-level details user
simply assumes

Procedural Abstraction

* Compute square root:

* In Python:

>>> 1mport math
>>> math.sqrt(16)
4.0

=>>2>

N — sqrt() —® square root of n

What is computation?

Declarative Knowledge

Declarative knowledge 1s composed of
statements of facts

“A good health care plan improves the quality
of medical care while saving money”.

“DNA has double helix structure”.

“y1s square root of x 1t and only 1t y*y = x”

Imperative Knowledge

* Imperative knowledge 1s about how to
accomplish something. Think of 1t as a recipe.

* How to compute square root:
1) start with a guess, g

2)1t g * g1s close enough to x, then g 1s a good
approximation ot the square root of x.

3) Otherwise, create a new guess by averaging g and

x/g. le.g_new = (g_old + x/g_old)/2
4) Using the new guess, go back to step 2

Square Root
initial guess g = 3
38 * 3 =g square root of 25
o =(8+25/38)/2 = 5.66
g * o= 32.04

g =504....... 25.4....close enough to 25, we are

What is algorithm

* Algorithm- How to perform a computation
* The algorithm has converged.
* How did we get here?

— Set of Instructions

— A flow of control (the order of executing)

— Termination condition (when to stop)

Initial computer: fixed program
computer

* Designed to do very specific thing.

* First computer (1941) solve system of linear
equations.

Stored Program Computer

Treat data and 1nstructions as the same thing

No distinction between the program and the
data the program operates.

Program could produce program.

Extremely flexible

Stored Program Computer

Treat data and 1nstructions as the same thing

What is programming language?

* Combining small number of instructions, you
can create complex tasks

* A programming language provides a set of
primitive instructions and a set ot primitive
control structures.

What is different between
programming languages?
— Set of 1nstructions

— A flow of control (the order of executing)

— How to combine them?

Amazing thing about programming

* Computer 1s always doing WHATEVER you
ask them to do.

* Annoying: 1f your program doesn’t work, 1t
1s your own fault.

Syntax, Static Semantics,
Semantics

* Syntax: which sequences of characters and symbols
constitute a well-formed string

e.g. X= 3+4 correct
X= 3,4 not correct

 Static Semantics: which well-formed strings have a
meaning.

3/“abc” syntactically fine, but not meaningful. value
operator value. but no real meaning.

* Semantics: what that meaning is.
Both syntactically correct and semantically correct

What might happen if the program
doesn’t do what we want it to do?

* It might crash. Stop running.
* Never stopping. Infinite loop.
* Run to completion but produce wrong answer

We will learn how to avoid this from

happening

Some programming provides strict
static semantics

* Filtering out mistakes for you.
e.g. Python doesn’t allow you to do 3/”abc”
Java 1s very good at this.

But Python 1s better than C.

Why Python?

* Because 1t 1s easy and great fun.

— A wide-range of applications, esp. in Al, scientific

research (life science), data science, and web
— Easy to learn.
— Fast to write (shorter code than C, C++, Java)
— Easy toread (more English-like syntax)
— FEasily transferable skills.
— Easier to debug

Compiled vs. Interpreted

* Interpreted (easier to learn):

source code (you wrote) -> checker->interpreter-
>output

* Compiled (more efficient):

source code (you wrote) -> checker/compiler-
>object code (language close to computer hardware
knows) -> interpreter by hardware->output

Error message will be in object code

On to Python

“hello world”

« C
#include <stdio.h>
int main(int argc, char ** argv)
d
printf(“Hello, World!\n");

b

* Java
public class Hello
d

public static void main(String argv[])
{
I I System.out.println(“Hello, World!”);
§

§
* Python

print “Hello, World!”

Python is

A scripting language (strong in text-processing)
An interpreted language, like Perl.

A very high-level language (close to human
semantics).

Procedural (like C, Pascal, but much more)
But also object-oriented (like C++ Java).

And even tfunctional

Three ways to run a Python
program

* Interactive
>>> for 11n range(5):
print 1,
01234
* Save to a file, say foo.py
in command line: foo.py
* Add a special line pointing to the detault interpreter:
add #!/usr/bin/env python to the top of foo.py
make foo.py executable (chmod +x foo.py)
in the command-line: ./foo.py

Quiz

What 1s the advantage ot stored-program
computer?

What sorts of errors can occur 1n a program?

What 1s syntax, static semantics, semantics?

Let’s get started
If IDEL is not installed, please use

http://pythonfiddle.com/

Values

e Numbers
3
3.14

* Strings
“hello, world”
“John”
“38.1415"

Types

* type(3) Int

* type(3.14) tloat

* type(“hello,world!”)
>>> type("hello,world!")
<type 'str'>

>>> type(17)

<type 'Int'>

>>> type(100.0)

<type 'tloat'>

Operators & Operands

o 4 K _ /) k%

* 1+2 addition

* 2*3 multiplication
* 3%*5 power

* 3/5 division
>>> 3/5

O

Operators & Operands

o 4k _ /K%

1+2 addition

2*3 multiplication
* 3%*5 power

* 3/5 division
>>>3/5

O

>>> 3.0/5
0.6

Variables

* myString = “be1”

* myString = myString + “x1ao”

* print myString

>>> myString = 'bel;

>>> myString

'bel’

>>> myString = myString + 'x1ao'
>>> mySTring

