
CSC 280 Introduction to Computer
Science: Programming with Python

Lecture 1

Prof. Bei Xiao
Fall, 2014

American University

Logistics

•  Lectures: Mon, Wed & Thur, 1145am-1pm
•  Personnel: Instructor: Bei Xiao
 TA: Alex Perepechko
•  Bei: SCAN 110 Wed 4-5:30pm or by

appointment.
•  Alex: SCAN 160, Monday 3:30pm-4:30pm

Logistics

•  Blackboard: Homework posting & submission,
announcements, lecture notes, discussions,
grading.

•  Course webpage: course info, organization,
reading assignments, lecture notes.

•  http://nw08.american.edu/~bxiao/CSC280/
CSC280_Fall2014.html

Grades
•  Programming homework's: 50%

–  You are allowed to have one homework late but no more than 48 hours.
–  Any other late homework will be reduced 50% if submitted within 48 hours.
–  After that, zero credit.
–  Discussion is allowed in homework, but you must declare your collaborator.
–  Please follow Homework format to turn in your homework. Homework

must be submitted via the Blackboard system. Submitting via email is not
accepted.

•  Two mid-term exams (open book, open source, but no discussion). One
around mid October and Before Thanksgiving. 20%

•  In-class quizzes: 10%. I will keep a note who answered questions.
•  Final project: creative problem solving. 20%
•  Cheating means copying lines of code. Only high level discussion is

allowed.

Textbooks

•  Textbooks:
How to think like a computer scientist: learning Python,
Allen Downey (required)
Introduction to Computation and Programming Using
Python, MIT Press, John Guttag.

•  Tutorial:

 Official Python Tutorial, by Guido van Rossum

Course Objectives
•  Prepare students with little programming experiences

to be able to write small and midsized code to solve
problems.

•  Being able to read other people’s code and software.
•  Being able to map a problem into a computational

framework
•  Prepare students for further engineering, scientific,

and other technology courses
•  Position students to compete successfully for interns

and summer jobs.
•  Having fun!

Course Outline (tentative)
•  Python Basics (Sep- Mid October)

–  Syntax, Control Flow.
–  Basic Data Structure

•  Object-Oriented and Functional Programming (mid October – early
November)
–  Classes and objects
–  Inheritance

•  Python for Algorithmic problem solving and other goodies (early
November to mid December)
–  Simulation and Random Walk.
–  Data analysis and plotting
–  Recursion
–  Sorting, Searching, memorization
–  Basic Text Processing with Python
–  Python API

What is computer science?

•  Problem-solving: puzzles, search, optimization,
calculation beyond pencil and paper, storing
information, retrieving information, tedious daily
tasks one is too lazy to do, controlling robots….

•  Algorithm: a step by step list of instructions for
solving ANY INSTANCE of the problem might
rise.

•  Abstraction: separate logical and physical
perspectives

Logical vs. Physical Perspective
•  Driving the car

–  Logical perspective
 of the automobile
–  also called “interface”
–  User opereates

•  Repairing the car

–  Physical perspective
–  Control the
 low-level details user
 simply assumes

Procedural Abstraction

•  Compute square root:

•  In Python:

>>> import math
>>> math.sqrt(16)
4.0
>>>

What is computation?

Declarative Knowledge

•  Declarative knowledge is composed of
statements of facts

•  “A good health care plan improves the quality
of medical care while saving money”.

•  “DNA has double helix structure”.
•  “ y is square root of x if and only if y*y = x”

Imperative Knowledge

•  Imperative knowledge is about how to
accomplish something. Think of it as a recipe.

•  How to compute square root:
1) start with a guess, g
2) if g * g is close enough to x, then g is a good
approximation of the square root of x.
3) Otherwise, create a new guess by averaging g and
x/g. I.e. g_new = (g_old + x/g_old)/2
4) Using the new guess, go back to step 2

Square Root
•  initial guess g = 3

•  3 * 3 = g square root of 25

•  g = (3+25/3)/2 = 5.66

•  g * g = 32.04

•  g = 5.04……. 25.4….close enough to 25, we are
done.

What is algorithm

•  Algorithm- How to perform a computation
•  The algorithm has converged.
•  How did we get here?

–  Set of instructions
–  A flow of control (the order of executing)
–  Termination condition (when to stop)

Initial computer: fixed program
computer

•  Designed to do very specific thing.

•  First computer (1941) solve system of linear
equations.

Stored Program Computer

•  Treat data and instructions as the same thing
•  No distinction between the program and the

data the program operates.
•  Program could produce program.
•  Extremely flexible

Stored Program Computer

Treat data and instructions as the same thing

Memory	

Control	
 Unit	
 Algorithmic	
 Logic	

Unit	
 	

Input	
 /Output	

What is programming language?

•  Combining small number of instructions, you

can create complex tasks

•  A programming language provides a set of
primitive instructions and a set of primitive
control structures.

What is different between
programming languages?

–  Set of instructions
–  A flow of control (the order of executing)
–  How to combine them?

Amazing thing about programming

•  Computer is always doing WHATEVER you
ask them to do.

•  Annoying: if your program doesn’t work, it
is your own fault.

Syntax, Static Semantics,
Semantics

•  Syntax: which sequences of characters and symbols
constitute a well-formed string

 e.g. x= 3+4 correct
 x= 3 , 4 not correct
•  Static Semantics: which well-formed strings have a

meaning.
 3/“abc” syntactically fine, but not meaningful. value
operator value. but no real meaning.
•  Semantics: what that meaning is.
 Both syntactically correct and semantically correct

What might happen if the program
doesn’t do what we want it to do?

•  It might crash. Stop running.
•  Never stopping. Infinite loop.
•  Run to completion but produce wrong answer
 We will learn how to avoid this from
happening

Some programming provides strict
static semantics

•  Filtering out mistakes for you.
 e.g. Python doesn’t allow you to do 3/”abc”
 Java is very good at this.
 But Python is better than C.

Why Python?

•  Because it is easy and great fun.
–  A wide-range of applications, esp. in AI, scientific

research (life science), data science, and web

–  Easy to learn.

–  Fast to write (shorter code than C, C++, Java)

–  Easy to read (more English-like syntax)

–  Easily transferable skills.

–  Easier to debug

Compiled vs. Interpreted

•  Interpreted (easier to learn):
 source code (you wrote) -> checker->interpreter-
>output

•  Compiled (more efficient):
 source code (you wrote) -> checker/compiler-
>object code (language close to computer hardware
knows) -> interpreter by hardware->output
 Error message will be in object code

On to Python

“hello world”
•  C

#include <stdio.h>
int main(int argc, char ** argv)
{
printf(“Hello, World!\n”);
}

•  Java
public class Hello
{
public static void main(String argv[])
{
! ! System.out.println(“Hello, World!”);
}
}

•  Python
 print “Hello, World!”

Python is

•  A scripting language (strong in text-processing)
•  An interpreted language, like Perl.
•  A very high-level language (close to human

semantics).
•  Procedural (like C, Pascal, but much more)
•  But also object-oriented (like C++ Java).
•  And even functional

Three ways to run a Python
program

•  Interactive
 >>> for i in range(5):

 print i,
 0 1 2 3 4
•  Save to a file, say foo.py
 in command line: foo.py
•  Add a special line pointing to the default interpreter:
 add #!/usr/bin/env python to the top of foo.py
 make foo.py executable (chmod +x foo.py)
 in the command-line: ./foo.py

Quiz

What is the advantage of stored-program
computer?

What sorts of errors can occur in a program?

What is syntax, static semantics, semantics?

Let’s get started

if IDEL is not installed, please use

http://pythonfiddle.com/

Values

•  Numbers
 3
 3.14

•  Strings
 “hello, world”
 “John”
 “ 3.1415”

Types
•  type(3) int
•  type(3.14) float
•  type(“hello,world!”)
>>> type("hello,world!")
<type 'str'>
>>> type(17)
<type 'int'>
>>> type(100.0)
<type 'float'>

Operators & Operands

•  +, *, -, /,**
•  1+2 addition
•  2*3 multiplication
•  3**5 power
•  3/5 division
>>> 3/5
0
?????? What happened?

Operators & Operands
•  +, *, -, /,**
•  1+2 addition
•  2*3 multiplication
•  3**5 power
•  3/5 division
>>> 3/5
0
?????? What happened? To get float number, use float.
>>> 3.0/5
0.6

Variables

•  myString = “bei”
•  myString = myString + “xiao”
•  print myString
>>> myString = 'bei';
>>> myString
'bei'
>>> myString = myString + 'xiao'
>>> mySTring

