
CSC 280 Introduction to Computer
Science: Programming with Python

Lecture 2 : Values, Types

 and Expressions

September 2, 2015
Prof. Bei Xiao

Fall, 2015
American University

Outline

•  Compiled versus Interpreted language
•  Values and Expressions
•  Types
•  Variables
•  First Python Program

Compiled vs. Interpreted
•  Interpreted (easier to learn):
 source code (you wrote) -> checker->interpreter-
>output
 Examples: Python, Perl, Lisp, PhP.

 Strength: easier to debug, Weakness: slower
•  Compiled (more efficient):
 source code (you wrote) -> checker/compiler->object
code (language close to computer hardware knows) ->
interpreter by hardware->output
 Error message will be in object code

Python is

•  A scripting language (strong in text-processing)
•  An interpreted language, like Perl.
•  A very high-level language (close to human

semantics).
•  Procedural (like C, Pascal, but much more)
•  But also object-oriented (like C++ Java).
•  And even functional

On to Python

“hello world”
•  C

#include <stdio.h>
int main(int argc, char ** argv)
{
printf(“Hello, World!\n”);
}

•  Java
public class Hello
{
public static void main(String argv[])
{
! ! System.out.println(“Hello, World!”);
}
}

•  Python
 print “Hello, World!”

From last lecture: What is a
program

•  Program is a set of instructions that specifies
how to perform a computation

•  Input
•  Output
•  Math
•  Conditional execution
•  Repetition

Questions

What is the advantage of stored-program
computer?

What is syntax, static semantics, semantics?

Let’s get started

IDE (Integrated Development
Environment)

IDEL (Python) is also told by
inspired by the movie Monty Python

IDEL

•  Integrated Development Environment
•  Shell, where we can type things.
•  Syntax Highlighting
•  Integrated Debugger (but it is not super

useful).
•  Use printing statements for debugging.
•  Color means something.

Demo: Printing
•  Before we do anything, let’s try to print something. Open an

editor, type the following and save it as a file:

print “Hello World!”
print “Hello Again”
print “This is fun.”
print ‘Yay! Printing.’
print “I ‘d much rather you ‘not’ .”
print “I like typing this.

Run the file by either select “ Run Module” or hit F5

•  What is your output? What type of error is it?

“Double Quotes”
•  >>> "doesn't"

"doesn't"
•  >>> 'doesn\'t'

"doesn't"
•  >>> '"yes"he said.'
•  '"yes"he said.'

>>> "\"Yes,\"he said."
'"Yes,"he said.

What is the output of the following statement?
>>> '"Isn\'t," she said.'

Objects

•  Everything in Python is an object
•  Each object has a type
•  Two types: Scalar and non-Scalar

Three ways to run a Python
program

•  Interactive
 >>> for i in range(5):

 print i,
 0 1 2 3 4
•  Save to a file, say foo.py
 in command line: foo.py
•  Add a special line pointing to the default interpreter:
 add #!/usr/bin/env python to the top of foo.py
 make foo.py executable (chmod +x foo.py)
 in the command-line: ./foo.py

The Basics

Representing Values

•  Everything on a computer reduces to
numbers
– Letters represented by numbers (ASCII codes)
– Pixel colors are three numbers (red, blue, green)
– So how can Python tell all these numbers apart?

•  Type:
•  A set of values and the operations on them.

– Examples of operations: +,-,/,*
– The meaning of these depends on the type

Expressions vs. Statements

Expression Statements

•  Represents something
§  Python evaluates it
§  End results is a value

•  Examples:
§  2.3
§  (3*7+2)*0.1

•  Does something
§  Python executes it
§  Need no results in a

value
•  Examples:

§  print “hello world”
§  import math

Values

•  Numbers
 3
 3.14

•  Strings
 “hello, world”
 “John”
 “ 3.1415”

Operators & Operands
•  +, *, -, /,**
•  1+2 addition
•  2*3 multiplication
•  3**5 power
•  3/5 division
>>> 3/5
0
?????? What happened? To get float number, use float.
>>> 3.0/5
0.6
Read more about operators in Python:
http://www.tutorialspoint.com/python/python_basic_operators.htm

Operators on String

>>> helloworld = "hello" + " " + "world"
>>> print helloworld
>>> lotsofhellos = "hello" * 10

Type: int

•  Type int (integer):
§  Values: …. -3, -2, -1, 0, 1, 2, 3, 5, …

§  Integer literals look like this: 1, 45, 4302830 (no commons
or periods).

§  Operations: +,-,*,/,** (power)

§  Principle: operations on int values must yield an
int.
§  Example: 1 /2 round the results to 0

o  Companion operation: % (reminder)
o  7% 3 evaluates to 1, remainder when 7 dividing by 3

Type: float

•  Type float (floating point):
§  Values: approximation of real numbers

§  In Python a number with a “.” is a float literal (e.g. 2.0).
§  Without a decimal a number is an int literal (e.g. 2)

§  Operators: +,-,*,/,**
§  Meanings for float are different form int, 1.0/2.0

evaluates to 0.5

§  Exponent notation is useful for large (or small)
values
§  -222.51e6 is -22.51 * 106 or -2251000

Type: float binary fractions
•  Floating-point numbers are represent in computer

hardware as base 2 (binary) fractions. Example: 1.25 is 5 *
2-2

•  Impossible to write most real numbers this way exactly.
•  This approximation results in representation error.

–  Similar to problem of writing 1/3 decimals
–  Python choose the closest binary fraction it can

•  When combined in expressions, the error can get worse.
–  Example: type 0.1 + 0.2 at the prompt >>>
Read more here:
https://docs.python.org/2/tutorial/floatingpoint.html

Type: str

•  Type String or str:
– Values: any sequence of characters
– Operation (s): + (catenation, or concatenation)

•  String literal: sequence of characters in quotes
– Double quotes: “abcex3$<&” or “hello world”
–  Single quotes: ‘Hello World!’

•  Concatenation can only apply to strings
–  “ab” + “cd” evalutes to “abcd”
–  “ab” + 2 produces an error

Type: bool

•  Type boolean or bool:
– values: True, False

•  Boolean literals are just True or False (have to be
capitalized)

– operations: not, and, or
– not b: True if b is false and False if b is true.
– b and c: True if both b and c are true; False

otherwise
– b or c: True if b is true or c is true; False

otherwise

=	
 means	
 something	
 else	

Type: bool

•  Often come from comparing int or float
numbers
– Order comparison: i<j, i<=j, i>=j, i>j
– Equality, inequality: i==j, i!=j,

=	
 means	
 something	
 else	

Type: bool
>>> bool(1)
True
>>> bool(0)
False
>>> True + 1
2
>>> False + 1
1>>> True and True
True
>>> print 3+2 < 5+7
True

Converting values between types

•  Basic form: type(value)
§  float(2) converst value 2 to type float (value now 2.0)
§  Int(2.6) converts value 2.6 to type int (value now 2)

•  Narrow to wide: bool => int => float
•  Widening, Python does this automatically if needed.

§  Example: 1 / 2.0 evaluates to 0.5 (casts 1 to float)

•  Narrowing. Python never does this automatically
•  Narrowing conversations cause information to be lost

§  Example: float(int(2.6)) evaluates to 2.0

Types
•  type(3) int
•  type(3.14) float
•  type(“hello,world!”)
>>> type("hello,world!")
<type 'str'>
>>> type(17)
<type 'int'>
>>> type(100.0)
<type 'float'>

Variables

•  myString = “bei”
•  myString = myString + “xiao”
•  print myString
>>> myString = 'bei';
>>> myString
'bei'
>>> myString = myString + 'xiao'
>>> mySTring

Exercise
•  Please yell out the answer of the following

expressions WITHOUT using IDLE

•  print "Is it greater?", 5 > -2
•  print "Is it greater or equal?", 5 >= -2
•  print "Is it less or equal?", 5 <= -2
•  print 3+2 < 5-7
•  print 3 + 2 + 1- 5 -4 % 2-1/4 +6

•  Then verify your answers with IDLE

Quiz
•  Please write down the answers of the following statements without using

Python on a piece of paper and turn your answers in (your full name
please):

•  1 == 1 and 1==2
•  print 2**4 + 5
•  type(‘100’)
•  type(4.0/2)
•  True and 1== 1
•  True or 2 == 1
•  print 7 % 2
•  print 2 * ‘**’

•  After you turn in your answer, you can verify with IDLE

Exercise
•  Generate programs that print the following:
1.  What is 3+5? 8
2.  What is 5-7? -2

3.  Assume that we execute the following assignments:
 w = 17, h = 12, delimiter = ‘.’

For each of the following expressions, write the value of the expression
and the type:
1. width/2
2. width/2.0
3. height/3
4. 1 + 2*5
5. delimiter *5

Next Lecture

•  Variables
•  More on Boolean operations
•  Expressions and statements
•  Operator Precedence
•  Comments

Take home reading

•  Chapter 2
•  Number and Math tutorials:
•  http://learnpythonthehardway.org/book/

ex1.html

•  http://learnpythonthehardway.org/book/

ex3.html

