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Abstract

Numerical techniques are used to study parametric Bézier cubics of monotonic curvature, and tools are presented
for design applications. Values are computed to aid in the selection of control points for building interpolatory cubic
spirals, and a table is developed which helps in adjusting the endpoint curvatures.
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1. Introduction

While it is easy to control certain kinds of spirals (such as logarithmic spirals) simply by adjusting their
equations, it is a difficult non-linear problem to control a Bézier cubic while maintaining it as a spiral. In
this paper, we use numerical methods to extract information that aids in the use of cubics for applications
where monotonic curvature is important. We suggest tables of values that can be used to select a particular
parametric cubic spiral which interpolates given positional and tangential end conditions.

A spiral is free of local curvature extrema, making spiral design an interesting mathematical problem
with importance for both physical (Gibreel et al., 1999) and aesthetic applications (Burchard et al., 1993).
Since Bézier cubics are common to all modern design systems (Farin, 1996), it would be convenient to
employ cubic spirals (Walton and Meek, 1996) so that spirals may be used in a variety of CAD systems.

Previous work fitting end conditions using cubics was done in several papers including (deBoor et al.,
1987) upon which we build in this paper. For other work on spirals that are rational or polynomial
functions and match end conditions see (Meek and Walton, 1998; Baumgarten and Farin, 1997),
and (Walton and Meek, 1999) and the references therein. In (Frey and Field, 2000), the problem
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of determining which rational quadratics have monotonic curvature is shown to be tractable without
numerical techniques. We incorporate many of these ideas and some from (Dietz, 2002) in the present
paper.

In papers such as (Roulier et al., 1991) and (Moreton and Sequin, 1992), optimization of a “fairness
measure” has been used to select free parameters in curve design. This approach works well, especially
when there is an underlying physical problem that dictates a measure that leads to a unique answer. In
contrast, we adopt the point of view that there is no single best answer for most problems, particularly
when the primary issue in the application is visual appearance. Through the use of tables we propose a
fast, simple, direct, and flexible method for meeting monotonic curvature constraints.

In the next section we develop notation used throughout the paper and present some important
background results. Section 3 discussigble region for cubic spirals and develops a table of values
which can be used to select a cubic’s inner control points so as to match given end positions and tangents.
In Section 4 we develop a table for matching tangent angles as well as curvatures at the endpoints of a
cubic spiral. We conclude in Section 5 with some possible applications.

2. Background and notation

Planar Bézier cubic curves are represented as

3
_ 3 n _[n o=l
p)=) b,B¥1), 0<r<1, Bi(z>—(i><l n", @)

v=0

wherebyg, by, by, andbs are control points. A complete discussion of Bézier cubics may be found in
(Farin, 1996). Since it does not alter curvature properties (except by a constant scale), we will assume
throughout this paper thép = (0, 0), andbz = (1, 0). This leaves four degrees of freedom for design,
corresponding to the control poirtbs andb, which will be assumed to lie in the fourth quadrant (so as

to allow for non-negative curvature). From (1) it follows that

p'(0) =3(by —bg), p'(1) =3(bs—by), p’(0)=6(b,—2by+by), and
p”(1) = 6(bs — 2b, + by).

The tangent angle (the angle between the tangent vector and the e @qrof the parametric cubic at
t = 0 is denoted by, while the tangent angle at= 1 is denoted by, as shown in Fig. 1.

Without loss of generality, we define spirals to be planar arcs with non-negative curvature and
continuous non-zero derivative of curvature. Thus, spirals have monotonic curvature and are free from
inflections but may have high winding numbers. Cubic spirals with tangent vectors that turn through
smaller angles are more likely to be useful in many applications. Thus, we assume that the vapyes for
and¢, are constrained so that0¢g < ¢1 < /2. These constraints also restrict our search to spiral arcs
of increasing curvature, as the conditigp < ¢1 is hecessary for this to occur (due to Vogt's theorem
(Guggenheimer, 1963)). Since any spiral may be parameterized either with increasing or decreasing
curvature simply by changing the direction of parameterization, arcs of increasing curvature may be
studied without loss of generality.
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bO: (0,0) b,= 00

Fig. 1. Tangential conditions are specified wihand¢ .

As shown in Fig. 1, the tangent lines for the parametric cubic-a ands = 1 and the horizontal
axes form a triangle where the lengths of the lower two sidedg@tesin(¢,)/sin(¢o + ¢1) (for the side
touching the origin) and; = sin(¢o)/sin(¢o + ¢1). The ratios
|b1—b0| |b2_b3|
=—— and =— 2
fo 7 fi @ (2
are used extensively in this paper. To ensure the parametric cubic is free from inflectiongy bath
/1 are constrained to be between zero and one. This, together with the angle restrictions imposed above,
implies that the cubic is convex.
Since curvature is
Xy — yx
@ “
the problem of designing cubic spirals could be formulated analytically as finding conditions on the
(non-constant) coefficients of a fifth degree polynomial to ensure its zeros are (@tljn For some
cubics,%—’f actually has five distinct real zerdsSince there is no closed form for the roots of a general
fifth degree polynomial, an analytic solution to this problem is not likely to be found, so we proceed
numerically.
The curvatures at the endpoints of the Bézier cubic are

K@) =

Ko 2(by —bo) A (bp—2b1+bg)  1-—f1 (ZSir(¢o) Sir’ (¢o + ¢1)) @)
0= 3lby — b3 T2 3sirf(¢1) ’

ke — 2(bz — b)) A (bz — 2b 4 b1) _ 1-fo (25in(q>1) Sin? (o + ¢1)) (5)
! 3lbz — by|3 12 3sirf(go) ’

whereA gives the third component of the cross product of two planar vectors.

! The parametric cubie(r) = 53+ 312 +1, y(r) = — {553 + 25t + 1 has this property.
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Curvature of Cubic
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Fig. 2. Cubic satisfyingyg = 7, ¢1 = %, fo= 0.5, f1 = 0.5 and its curvature.

3. Suggesting fo and f; for given ¢g and ¢,

To analyze this problem numerically, we express the four remaining degrees of freedom for parametric
cubics aspo, ¢1, fo, and f1. We say thatpg, ¢1, fo, and f1 determine a cubic since the values bf and
b, can be found using (2). In a context whefig and ¢, are fixed, we say thaf, and f; determine a
cubic.
For each given(¢o, ¢1) pair, we defineV(¢o, ¢1) to be the set of point§fy, f1) in [0, 1] x [0, 1]
such thaipg, ¢1, fo, and f1 determine a cubic spiral with increasing curvature. Similarly, for each given
(fo. f1) pair, V,( fo, f1) is defined as the set of poini@o, ¢1) in [0, /2] x [0, /2] such thaipg, ¢1, fo,
and f; determine a cubic spiral with increasing curvature. We shall ref&%t@o, ¢1) and Vs ( fo, f1) as
viable regions. If no confusion arises, we may just refer to a viable region without the specific notation.
For example, the cubic,

x(1)=.95(1—1)2+2.45%(1—1) +1°, y(t) =.95(1—1)? + .953(1 — 1),

in which ¢9 = 7/4, ¢ = /3, fo = 0.5, and f1 = 0.5, is not a spiral. So(0.5,0.5) is not in
Vi@ /4, m/3). Likewise,(r /4, 7 /3) is not in V4 (0.5, 0.5). A plot of this cubic and its curvature is shown
in Fig. 2.

To reveal a viable region such &s( /4, 7/3), we use a technique of eliminating points presented in
(Frey and Field, 2000) (used in that paper to locate rational Bézier quadratics of monotone curvature).
In particular, we fixpg = 7 /4 and¢, = = /3, and for some € [0, 1] we use standard software to plot
an implicit curve (called amlimination curve) in ( fo, f1) space whose points determine cubics having
K'(t) = 0. All points along an elimination curve iy, f1) space determine cubics which are not spirals,
as the derivative of the curvaturewafor these points is zero. Fig. 3 shows elimination curves for various
t values between zero and one. The viable region is the remaining area; it is the set of all pgigtgin
space determining spirals for those fixed tangential end conditions. #f Wadies had been sufficiently
dense in0, 1], the elimination curves in Fig. 3 would have completely covered the entire feyuept
for the viable region. The boundaries of the viable regions are composed of eliminations curves or (as is
more common) envelopes of elimination curves.

In Fig. 4, ten viable regionsy(¢o, ¢1) are shown for variouspy and ¢, values. The plot of
V;(1.00, 1.25) in Fig. 4 is not sufficiently large to visually detect the viable region (which is actually non-
empty in this case), so we use more accurate numerical routines. (For brevity, we omit further details.)
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Fig. 3. Elimination curves reveal thé, (= /4, /3) viable region.

To collect the information contained in the plots of Fig. 4, a function can be defined which maps
(¢, ¢1) pairs to (fo, f1) pairs which determine cubic spirals. This is accomplished by using an
interpolation scheme over an empirically derived tablé 6 f1) pairs such as that shown in Table 1.
For this table, the £, f1) ordered pairs were chosen so that most of the table was filled by only a few
such ordered pairs. For example, since the viable redfp0.8, 0.2) is quite large, the ordered pair
(fo, f1) = (.8, .2) is a good ordered pair for use with many differépg, ¢,) pairs. The viable regions
V,(0.7,0.5), V,(0.6,0.5), and V,;(0.6,0.4) also cover many¢o, ¢1) pairs. Entries in Table 1 marked
NVR are for (¢o, ¢1) pairs with no associated viable regighén interpolant to the( fo, f1) values
in Table 1 can be defined piecewise over rectangles or trianglési®,) space to produce a simple
formula® for selecting( fo, f1).

While the (fo, f1) parameters are simple algebraically, they do not provide direct information on
how to match or approximate given curvature values at the end points, and we turn our attention to this
problem in the next section.

4. Suggesting ranges of Ko and K for given ¢o and ¢

We now consider the problem of finding useful approximations to the admissible set of endpoint
curvatures of a cubic spiral. Unlik&, ¢1, fo, and f1, which uniquely determine a cubic, the four values
¢o, $1, Ko, and K; may determine 0, 1, 2, or 3 Bézier cubics (deBoor et al., 1987). We define another
type of viable regionVx (¢, ¢1), to be the set of pointéKy, K1) with non-negative coordinates such

2 Although another table could be created with differefi, f1) values, the positions of the NVR pairs would not change.
3 Note that the table could have been written in terms of ggsand cosepq) instead ofgpg and ¢4 to avoid unnecessary
calculation.
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V{(0.25,1.25) V(0.50,1.25) V4(0.75,1.25) V(1.00,1.25)

. / i‘

i

i AR
0" 02040608 1

fo

02040608 1 0.4 0.6
fo
V;(0.25,0.75)

Fig. 4.V (¢o, ¢1) viable regions.

that there exists at least one cubic spiral with increasing curvature interpolating the ¢aldgs Ko,
and K at the ends. Although we ultimately use numerical techniques to analyze this viable region, we
begin with two analytic conditions which are necessary but not sufficient for points toWig(i, ¢1).

First, for some cubic spiral to satisfy given tangential and curvature end conditions, some spiral must
exist which satisfies those end conditions. From Theorem 3.18 in (Guggenheimer, 1963), there exists
some convex spiral arc (not necessarily a parametric cubic) interpolaginls, ¢o € (0, 7/2), and
¢1 € (0, 7/2) with 0 < Kq < K, if and only if the circle of curvature dty contains the circle of curvature
at bz, and O< ¢g < ¢1 < /2. We have already imposed the latter condition by the assumptions made
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Table 1

Table of fo and f1 values for givenpg and¢4 values

do/P1 -2 3 A4 5 6 7 8 9 1.0 11 1.2 1.3 1.4 1.5
1 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (8,2) (.8,.2) (8,2) (8,2
2 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2)
3 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,2) (8,.2) (.8,2) (.8,.2)
A4 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,2) (.8,.2) (.8,.2)
5 (.8,.4) (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (8,2
.6 (.7,.5) (.7,.5) (.7,.5) (.8,.2) (.8,.2) (.8,2) (.8,.2) (.8,.2) (.8,.2)
4 (.6,.5) (.6,.5) (7,.4) (.7,.3) (.7,.3) (7,.3) (.7,.3) (.6,.2)
.8 NVR (.6,.4) (.6,.4) (.55,.35) (.55,.3) (.55,.3) (.55,.25)
9 (.5,.4) (.5,.35) (.5,.3) (.5,.3) (.45,.25)
1.0 NVR (.45,.32) (.43,.27) (.42,24)

Fig. 5. Circles of curvature dtg andbs.

in Section 2. Using elementary geometry, the former condition is formulated by imposing one constraint
that is derived from the tangential contact of the two circles of curvature and a second constraint to
ensure that the circle of curvaturelat actually containds. (See Fig. 5.) These two constraints lead to

the inequalities,

2(1 — coS(¢o + ¢1)) — 2KoSin(¢1)
2sin(¢o) — Ko

When K, = 0 the condition is that the tangent linelat supports the circle of curvature bt and this

again leads to the left inequality in (6). For fixed and¢,, the inequalities in (6) describe a region in

(Ko, K1) space above a hyperbola. (An example is shown in the right-hand plot of Fig. 7.) Points inside

this region give end curvatures which can be met with an infinite number of spirals, none of which are

necessarily cubics.

Second, for a cubic spiral to satisfy curvature end conditions, some parametric cubic must satisfy them.
As noted previouslypg, ¢1, Ko, andK; may determine 0, 1, 2 or 3 cubics. This is shown in (deBoor et al.,
1987) where results are derived on which valueKgfand K; admit cubic interpolants (not necessarily
spirals) for given positional and tangential end conditions. We begin with these results and give a few

further details.

and Kg < 2sin(¢g). (6)

K1>
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Egs. (4) and (5) show the relationship betwégn f1) and (Ko, K1). To analyze this relationship for
a fixed(¢o, ¢1), let

~ 1-
g_l-h

=~ and kvlzl 2fo’ (7)

fo Ji

which are scaled versions 0K, K;) independent of¢o, ¢1). The equations in (7) define a map from
(0,1] x (0,1] in (fo, f1) space taKg, K1) space that is neither one to one nor onto. To discover how
it folds upon itself, the singularities can be found by setting the Jacobian of this map to zero giving
—3f1fo+4f1+4fs —4=0. This implicit curve in(0, 1] x (0, 1] can be parameterized as

t
The image of (8) under the map defined by the equations in (7) is given by
~ ~  (4-3n)?
Ko=g—3z a4 Ki=1e0 - ©

This parametric curve actually has two pre-image&irl] x (0, 1]. The first is, of course, the one given
in (8), and the second can be found using (7) and (9) to get

At — 1+ /2(t —t2))
(fo, f1) = (—t+2\/ 2(t —12), 3 . (10)
_In (deBoor et al., 1987), it was shown in a diagram that the curve defined by (9) and the two lines
Ko =1 and K; = 1 divide (Ko, K;) space into regions with different multiplicities of solutions to
prescribed curvatures at the endpoints. A similar diagram appears on the right side of Fig. 6 where points
in regionsA and B each have 1 corresponding cubic, pointstirand D each have 2 corresponding

1_
no
087 solutions
A
0.6
f1 K
1
0.4
E
cfp_————
0.2
B no solutions
— -
0 0.2 04 . 06 0.8 1 0

Fig. 6. Regions i fo, f1) space map to regions {Kg, K1) space.
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cubics, and points in regio@ have 3 corresponding cubics. The left side of the figure illustrates the
curves defined by (8) and (10) together with the pre-image&et 1 andK; = 1 under the map in (7).

These bounding curves in their respective spacgs (1) space andKg, K;) space) help determine
which regions in each of the spaces map to each other in a one-to-one fashion. These regions are labeled
in Fig. 6. Each region matches with the one(s) in the other space with the same letter. For example, the
restriction of the mapping given by (7) to regi@n in (fo, f1) space gives a bijection to regiah in
(Ko, K1) space. Similarly for region€’, andCs3, so each point o€ has three corresponding pre-images
in (fo, f1) Space, one in each of the regiafis C, andC3. Analogous statements can be made for regions
D, and D, each mapping ont® and regionsE; and E, each mapping onté’.

Guided by these two necessary conditions, we now turn to the numerical analysis of the sufficient
conditions. We use the equations in (7) to map the elimination curvégiry,) space into(Kg, K1)
space. This is done using standard software routines to create a piecewise linear approximation of the
(implicitly defined) elimination curves and thus sequences of points which may be mapped using (7).
The images are reconnected to get piecewise linear curyéjrk;) space which we calK-elimination
curves. An example of the resulting plot superimposed with bounding curves from an unscaled version of
Fig. 6 is in Fig. 7 where the lower black curve is the boundary of the region described by the inequalities
in (6). The labels of the regions in Fig. 6 are used to discuss Fig. 7.

There are a few things to note in the plots in Fig. 7. The viable redigi0.2, 0.7), includes the white
areas in regiond andB. In those regions, each point represents a unique cubic, so a single K-elimination
curve through a point in regions and B indicates that the one cubic with thogg ¢., Ko, andK; end
conditions will not be a spiral. Th&g (0.2, 0.7) viable region also contains area from regi@nbecause

V  (0.2,0.7)
20
181
v, (0.20.7) 161
1 141
12]
0.8
10
0.6 K18'
i
6.
o1
0.21 o——— 7]
————— W _\ 0 01 02 03 04 05
0" 02 04 06 08 Ko

Fig. 7. Plots ofV(0.2,0.7) and Vk (0.2,0.7).
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K-elimination curves passing througdh each eliminate at most one solution. Note that the regipn

in the left plot of Fig. 7 is almost completely Vi, (0.2, 0.7), therefore regiorC in the right plot must
have pre-images in regiaty determining cubic spirals. However, since regondoes have elimination
curves passing through it, regiéhwill have K-elimination curves passing through it as well even though
itis in Vk(0.2,0.7). In fact, elimination curves appear in just small portions of the redgigim the left
plot of Fig. 7, but these also show up in regién Also, the same elimination curves which contribute
just a small portion to regio; in the left-hand plot also contribute just a small portion to regioim

the left plot near the point0, 1). Those elimination curves map to K-elimination curves in the right plot
which appear as horizontal streaks n&ar= 6 which pass through regiors C, andD. A similar effect
can also occur from elimination curves néar0) in (fo, f1) space.

Also, note that by (6), the end curvatures for spirals (not necessarily cubics) must lie above the lower
black curve in the right plot in Fig. 7. The viable regidrk (0.2, 0.7), is a subset of the set of curvatures
that correspond to any spiral, and Fig. 7 shows which portions of regicarsd B are inV (0.2, 0.7).

Thus, for each¢o, ¢1), plots such as those shown in Fig. 7 reveal certain parts of the viable region
Vi (¢o, ¢1). These plots are time consuming to compute and difficult to interpret automatically. So, we
proceed by creating a collection of such plots for variggsand ¢, values, extract information from
each, and store it for future use.

In a design environment, it would be useful to Iy and K; vary independently. This can be
accomplished if the viable region is approximated as one or more rectangles (with sides parallel to the
axes) in the viable region. See Figs. 8 and 9. Of course, not all the viable region will be captured by the
rectangles, but it does allow, and K; to be chosen independently, each within specified ranges.

20
|
18- BOX II
16

141

121

K110

0 0.1 02 0.3 0.4

Fig. 8. Finding rectangles ilk (0.2, 0.6).
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Fig. 9. Finding rectangles iik (0.6, 1.2).

We create rectangles only in regions(éfy, K1) space having unique cubic solutions. The regions in
(Ko, K1) space that are omitted cause the portion of the viable region that is represented in the tables to
be disconnected. The omitted region may be important for some applications, but requires considerably
more rectangles and a means of identifying which of potentially several possible cubics is needed for a
particular pair of curvatures. We do not pursue the problem further in the present paper.

In Table 2, three rectangles (boxes I, I, and 1ll) are listed for each tabulated,) pair. Absence
of viable region, and hence rectangles is indicated with the IgttEior box I, Komin is always zero.

Boxes Il and Il lie in regions wher&, > 1 and K; > 1, with box Il not being above box Ill. The
intent for these two rectangles is for box Il to claim low&g values and for box Il to claim higher

K, values. The reason for this is understood upon inspection of a ty@galk,) space viable region
plot, which becomes narrower & grows. Fig. 9 is a plot oV (0.6, 1.2). By interpolating rectangles
with corresponding box numbers, the viable region d¢g, ¢,) values which are between tabulated
values may be approximated as well. Tt#®, ¢1) pairs from Table 1 which were marked as NVR
will obviously not have boxes in Table 2. There are two additio@al ¢;) pairs, namely(0.8, 0.9)

and (1.0, 1.2), which are not given boxes. Their viable regions, which are in region A, are only small
horizontal slivers.

Since we chose to find only about 300 rectangles, each with slightly different objectives, it was
simplest to suggest the rectangles manually and allow an algorithm to adjust the corners as needed.
The corners of each (non-trivial) rectangle in Table 2 have been checked to ensure they lie in the
viable region. The interior and the sides of each rectangle are believed to also lie in the viable region
based on visual inspection of each rectangle plotted with the images of elimination curves as in Figs. 8
and 9.
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K
0

Fig. 10. A CAD system could use the tables to see ifffgerange overlaps with th& range.

Table 2
Table of rectangles inKg, K1) space

Angles Box | Box Il Box Il

Ko K1 Ko K1 Ko K1

[0%) o1 min max min max min max min max min max min max
A1 2 0 1 72 .88 155 17 3 20 .16 175 20 710
A 3 0 .075 1.6 2.23 119 .15 7.4 18.6 125 .165 20 610
A1 4 0 .05 2.93 4.77 101 .103 11.6 16.4 .105 .145 20 510
A .5 0 .05 4.85 7.65 .095 12 15 20 .098 125 20 %10
A .6 0 .05 7 13 .09 A 17 50 .095 .14 50 510
A 4 0 .05 10.9 18.1 .084 A 29.2 44.8 .09 13 50 x @0t
A .8 0 .04 14.2 23.8 .08 .09 30 50 .08 12 50 410
A .9 0 .04 15 20 .08 .09 38 71 .08 12 71 410
1 1 0 .03 18.2 35.8 .08 .09 46 74 .08 A1 74 410
A 1.1 0 .01 20.15 41.35 .074 .09 59.6 76.4 .08 A1 82 410
A 1.2 0 .04 29 48 .072 .09 64.7 78.3 .073 A 922 310
1 13 0 04 377 51.3 .07 .08 63 90 .07 1 90 310
A 1.4 X X X X .07 .08 67 100 .07 A 100 30
A 1.5 X X X X .07 .072 100 100 .07 .072 100 310

(continued on next page)
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Table 2 Continued from Table 2)

Angles Box | Box Il Box Il
Ko K1 Ko K1 Ko K1
(0% 1 min max min max min max min max min max min max
2 3 0 2 75 .85 .35 37 3 20 .36 .38 20 410
2 4 0 15 1.2 1.6 .28 .35 6 20 3 .35 20 410
2 5 0 1 2 2.8 24 32 8 20 26 .35 20 40
2 6 0 1 3.1 3.9 22 3 10 20 225 33 20 410
2 7 0 1 3.8 5.4 2 26 11 20 220 31 20 410
2 8 0 1 5.2 6.8 .188 .26 14.6 194 .19 27 20 410
2 9 0 1 6.3 8.7 177 24 205 645 175 31 70 410
2 1 0 1 8 10.4 17 22 17 20 17 31 70 410
2 11 0 1 9.5 12 165 .2 16 70 165 .3 70 410
2 12 X X X X .15 .19 17 70 155 .28 70 40
2 13 x X X X 142 .15 306 684 145 .28 81 40
2 14 X X X X 14 .18 30 65 14 .28 65 40
.2 1.5 X X X X X X X X 135 .28 85 1
3 4 0 4 1 1 54 56 3 20 55 57 20 40
3 5 0 3 1.4 15 449 53 5.6 18.4 A7 52 20 410
3 6 0 .25 1.93 217 .38 5 6 20 A4 5 20 410
3 7 0 2 25 2.8 344 A7 9.2 18.8 .345 52 20 410
3 8 0 2 324 356 312 42 8.3 18.7 315 5 25 410
3 9 0 15 4 4.4 .28 4 9 20 .285 48 20 40
3 1 x X X X .26 .37 10 20 .265 46 20 10
3 1.1 X X X X .25 .38 12 20 .245 44 20 40
3 12 x X X X 232 34 11.9 19.1 235 42 20 40
3 13 x X X X 22 .33 13 64 22 48 64 40
3 14 X X X X 2 3 16 78 .25 48 78 40
3 15 x X X X 2 .28 185 70 2 48 70 40
4 5 X X X X .694 71 5.2 16.3 X X X X
4 6 X X X X .58 71 3.4 20 .6 7 20 10
4 7 X X X X 5 7 6 20 55 7 20 fo
4 8 X X X X 44 63 6 20 A7 .69 20 40
4 9 X X X X 4 62 8 20 45 7 20 fo
4 1 x X X X .37 55 9.2 18.8 .39 .65 20 40
4 11 X X X X 343 55 9.2 18.8 35 .66 20 40
4 12 X X X X 3 5 8 20 .33 64 20 o0
4 13 x X X X .28 5 10 88 .285 .66 88 40
4 14 X X X X 265 .5 12 80 .28 7 80 10
4 15 x X X X 24 45 14 20 .26 58 20 40
5 .6 X X X X .8 .86 1.6 2.2 X X X X
5 7 X X X X .68 .78 2 20 .69 75 20 40
5 8 X X X X .58 8 3 20 6 76 20 1000
5 9 X X X X 53 8 6.5 18.5 53 75 20 1000
.5 1 X X X X .450 .750 6 20 470 770 20 1000
5 1.1 x X X X 430 7 9.2 18.8 410 820 20 100
5 12 x X X X .370 750 8 20 .370 830 20 100

(continued on next page)
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Table 2 Continued from Table 2)

Angles Box | Box Il Box Ill
Ko K1 Ko K1 Ko K1

0] 1 min  max min  max min max min max min max min max
5 1.3 X X X X .330 7 8 20 .350 .8 20 100
5 1.4 X X X X 3 .6 9 20 .310 .8 20 200
5 1.5 X X X X .290 .640 11 20 3 .8 20 200
.6 T X X X X .950 1 1.9 1.950 X X X X

.6 .8 X X X X .750 9 2 35 770 .960 2.250 3.810
.6 9 X X X X .650 9 3 7.5 .660 .880 2.830 8.6
.6 1 X X X X 570 .850 4.8 16 .6 .730 16 36
.6 1.1 X X X X 510 .850 5 20 .560 .710 20 100
.6 1.2 X X X X 470 .870 6.5 20 510 770 20 100
.6 1.3 X X X X .450 .850 7 20 470 .810 20 100
.6 1.4 X X X X 420 .8 7 20 .450 .840 20 100
.6 1.5 X X X X 4 .8 9 20 .450 .850 20 100
7 .8 X X X X 1.1 1.150 1.9 1.950 1.1 1.150 1.9 1.950
e 9 X X X X 9 1.1 2.2 3 9 1.1 2.2 3

e 1 X X X X .8 1 25 4.4 .8 1 25 4.4
e 1.1 X X X X T 1 4 6 .710 1 4 6

e 1.2 X X X X .650 9 4 9 .650 9 4 9

e 1.3 X X X X .6 9 5 12 .6 9 5 12
7 1.4 X X X X .6 .750 5 20 .6 .750 5 20
e 1.5 X X X X .560 .8 6 20 .6 .8 20 28
.8 .9 X X X X X X X X X X

.8 1 X X X X .9 1.1 2.080 2.180 X X X X

.8 1.1 X X X X 9 1.1 2.7 3.6 9 1.1 2.6 3

.8 1.2 X X X X .8 1 3 4.8 .8 1.1 3.7 4.5
.8 1.3 X X X X .750 1.1 4 6 .8 1.1 4.1 6

.8 1.4 X X X X 7 1 5 8 7 1 5 8

.8 1.5 X X X X 7 1 6 9 7 1 6 9

.9 1 X X X X X X X X X X

.9 1.1 X X X X X X X X X X X

.9 1.2 X X X X .970 1.2 2.8 3.1 X X X X

.9 1.3 X X X X 9 1.1 3.2 4 X X X X

9 1.4 X X X X .8 1 3.8 4.6 .8 1 4.1 4.460
.9 1.5 X X X X .750 1 4.6 5.6 .8 1 4.840 6

1 1.1 X X X X X X X X X X X

1 1.2 X X X X X X X X X X X

1 1.3 X X X X X X X X X X X

1 1.4 X X X X 1.020 1.1 3.4 3.450 X X X X

1 1.5 X X X X .9 1 3.7 3.8 X X X X

5. Conclusions and applications

We have presented tools that can be used to help automatically select control points for Bézier cubics.
For example, the piecewise interpolant discussed in Section 3 can be used to give control points from end
conditions that specify given points and tangent directions. The control points produced frggrati
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f1 values are heuristically good choices in regards to monotonic curvature and if no other information or
constraints are available, they could be used directly when they apply. In a design system, Table 1 could
be extended to angle pairs that do not admit a spiral cubic. For such anglefpafisyalues would have
to be chosen based on other considerations. It may actually be desirable in a design system to replace
such an extended table with a more compact formula that approximates its entries, but the details of
determining this table and deriving such a formula is beyond the scope of the present paper.

As an example of how a CAD system could use the information provided by Table 2, consider the
following problem (Fig. 10). Given three points k¢ and their tangent angles, can two cubic spirals be
fit with overall curvature continuity? The join point may be a local extrema of curvature (as in Fig. 10),
or it may not, but in either case we wish to join two spirals with matching tangent vector and continuous
(non-specified) curvature. For the two points and tangents on the left side of the figure, a linear scale
(equal to the inverse of the length of the left-hand chord) is applied to each of the three boxes in Table 2
for a left (¢o, ¢1) pair. This gives bounds oK, and K for the left piece of the problem and similar
bounds may be found for the right piece of the problem. If there is any overl&p Wralues allowed for
the left piece of the problem ankly values allowed for the right piece of the problem, a solution to the
original problem is possible. This is shown in Fig. 10 with tw&, K;) boxes. These boxes represent
scaled forms of the boxes from Table 2. A join is possible if the rakigeverlaps the rang&, and in
this case, the curvatures at the outer eriéisand K, are still free to move independently in the given
ranges. Since the boxes are presented for increasing curvature, different variations of the problem will
require using the&ky and K, from the table in the appropriate order.

The tools presented in this paper only apply to cubics, and only address the issue of monotonic
curvature. Future work may try to create similar tools for other classes of curves.
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