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Abstract

Numerical techniques are used to study parametric Bézier cubics of monotonic curvature, and tools are p
for design applications. Values are computed to aid in the selection of control points for building interpolator
spirals, and a table is developed which helps in adjusting the endpoint curvatures.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

While it is easy to control certain kinds of spirals (such as logarithmic spirals) simply by adjusting
equations, it is a difficult non-linear problem to control a Bézier cubic while maintaining it as a spi
this paper, we use numerical methods to extract information that aids in the use of cubics for appl
where monotonic curvature is important. We suggest tables of values that can be used to select a p
parametric cubic spiral which interpolates given positional and tangential end conditions.

A spiral is free of local curvature extrema, making spiral design an interesting mathematical p
with importance for both physical (Gibreel et al., 1999) and aesthetic applications (Burchard et al.,
Since Bézier cubics are common to all modern design systems (Farin, 1996), it would be conve
employ cubic spirals (Walton and Meek, 1996) so that spirals may be used in a variety of CAD sy

Previous work fitting end conditions using cubics was done in several papers including (deBoo
1987) upon which we build in this paper. For other work on spirals that are rational or polyn
functions and match end conditions see (Meek and Walton, 1998; Baumgarten and Farin,
and (Walton and Meek, 1999) and the references therein. In (Frey and Field, 2000), the p
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of determining which rational quadratics have monotonic curvature is shown to be tractable w
numerical techniques. We incorporate many of these ideas and some from (Dietz, 2002) in the
paper.

In papers such as (Roulier et al., 1991) and (Moreton and Sequin, 1992), optimization of a “f
measure” has been used to select free parameters in curve design. This approach works well, e
when there is an underlying physical problem that dictates a measure that leads to a unique an
contrast, we adopt the point of view that there is no single best answer for most problems, part
when the primary issue in the application is visual appearance. Through the use of tables we pr
fast, simple, direct, and flexible method for meeting monotonic curvature constraints.

In the next section we develop notation used throughout the paper and present some im
background results. Section 3 discussesviable region for cubic spirals and develops a table of valu
which can be used to select a cubic’s inner control points so as to match given end positions and t
In Section 4 we develop a table for matching tangent angles as well as curvatures at the endpo
cubic spiral. We conclude in Section 5 with some possible applications.

2. Background and notation

Planar Bézier cubic curves are represented as

p(t) =
3∑

ν=0

bνB
3
ν (t), 0� t � 1, Bn

i (t) =
(

n

i

)
(1− t)n−i t i, (1)

whereb0, b1, b2, andb3 are control points. A complete discussion of Bézier cubics may be foun
(Farin, 1996). Since it does not alter curvature properties (except by a constant scale), we will
throughout this paper thatb0 = (0,0), andb3 = (1,0). This leaves four degrees of freedom for desi
corresponding to the control pointsb1 andb2 which will be assumed to lie in the fourth quadrant (so
to allow for non-negative curvature). From (1) it follows that

p′(0) = 3(b1 − b0), p′(1) = 3(b3 − b2), p′′(0) = 6(b2 − 2b1 + b0), and

p′′(1) = 6(b3 − 2b2 + b1).

The tangent angle (the angle between the tangent vector and the vector〈1,0〉) of the parametric cubic a
t = 0 is denoted byφ0, while the tangent angle att = 1 is denoted byφ1 as shown in Fig. 1.

Without loss of generality, we define spirals to be planar arcs with non-negative curvatur
continuous non-zero derivative of curvature. Thus, spirals have monotonic curvature and are fr
inflections but may have high winding numbers. Cubic spirals with tangent vectors that turn th
smaller angles are more likely to be useful in many applications. Thus, we assume that the valueφ0

andφ1 are constrained so that 0< φ0 < φ1 < π/2. These constraints also restrict our search to spiral
of increasing curvature, as the conditionφ0 < φ1 is necessary for this to occur (due to Vogt’s theor
(Guggenheimer, 1963)). Since any spiral may be parameterized either with increasing or dec
curvature simply by changing the direction of parameterization, arcs of increasing curvature m
studied without loss of generality.
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Fig. 1. Tangential conditions are specified withφ0 andφ1.

As shown in Fig. 1, the tangent lines for the parametric cubic att = 0 andt = 1 and the horizonta
axes form a triangle where the lengths of the lower two sides ared0 = sin(φ1)/sin(φ0 + φ1) (for the side
touching the origin) andd1 = sin(φ0)/sin(φ0 + φ1). The ratios

f0 = |b1 − b0|
d0

and f1 = |b2 − b3|
d1

(2)

are used extensively in this paper. To ensure the parametric cubic is free from inflections, bothf0 and
f1 are constrained to be between zero and one. This, together with the angle restrictions impose
implies that the cubic is convex.

Since curvature is

K(t) = ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
, (3)

the problem of designing cubic spirals could be formulated analytically as finding conditions o
(non-constant) coefficients of a fifth degree polynomial to ensure its zeros are not in(0,1). For some
cubics, dK

dt
actually has five distinct real zeros.1 Since there is no closed form for the roots of a gen

fifth degree polynomial, an analytic solution to this problem is not likely to be found, so we pro
numerically.

The curvatures at the endpoints of the Bézier cubic are

K0 = 2(b1 − b0) ∧ (b2 − 2b1 + b0)

3|b1 − b0|3 = 1− f1

f 2
0

(
2sin(φ0)sin2(φ0 + φ1)

3sin2(φ1)

)
, (4)

K1 = 2(b3 − b2) ∧ (b3 − 2b2 + b1)

3|b3 − b2|3 = 1− f0

f 2
1

(
2sin(φ1)sin2(φ0 + φ1)

3sin2(φ0)

)
, (5)

where∧ gives the third component of the cross product of two planar vectors.

1 The parametric cubicx(t) = 3
50t3 + 1

2t2 + t , y(t) = − 19
100t

3 + 1
20t2 + t has this property.
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Fig. 2. Cubic satisfyingφ0 = π
4 , φ1 = π

3 , f0 = 0.5, f1 = 0.5 and its curvature.

3. Suggesting f0 and f1 for given φ0 and φ1

To analyze this problem numerically, we express the four remaining degrees of freedom for par
cubics asφ0, φ1, f0, andf1. We say thatφ0, φ1, f0, andf1 determine a cubic since the values ofb1 and
b2 can be found using (2). In a context whereφ0 andφ1 are fixed, we say thatf0 andf1 determine a
cubic.

For each given(φ0, φ1) pair, we defineVf (φ0, φ1) to be the set of points(f0, f1) in [0,1] × [0,1]
such thatφ0, φ1, f0, andf1 determine a cubic spiral with increasing curvature. Similarly, for each g
(f0, f1) pair,Vφ(f0, f1) is defined as the set of points(φ0, φ1) in [0, π/2]× [0, π/2] such thatφ0, φ1, f0,
andf1 determine a cubic spiral with increasing curvature. We shall refer toVf (φ0, φ1) andVφ(f0, f1) as
viable regions. If no confusion arises, we may just refer to a viable region without the specific nota

For example, the cubic,

x(t) = .95t (1− t)2 + 2.45t2(1− t) + t3, y(t) = .95t (1− t)2 + .95t2(1− t),

in which φ0 = π/4, φ1 = π/3, f0 = 0.5, and f1 = 0.5, is not a spiral. So,(0.5,0.5) is not in
Vf (π/4, π/3). Likewise,(π/4, π/3) is not inVφ(0.5,0.5). A plot of this cubic and its curvature is show
in Fig. 2.

To reveal a viable region such asVf (π/4, π/3), we use a technique of eliminating points presente
(Frey and Field, 2000) (used in that paper to locate rational Bézier quadratics of monotone cur
In particular, we fixφ0 = π/4 andφ1 = π/3, and for someτ ∈ [0,1] we use standard software to pl
an implicit curve (called anelimination curve) in (f0, f1) space whose points determine cubics hav
K ′(τ ) = 0. All points along an elimination curve in(f0, f1) space determine cubics which are not spir
as the derivative of the curvature atτ for these points is zero. Fig. 3 shows elimination curves for var
τ values between zero and one. The viable region is the remaining area; it is the set of all points in(f0, f1)

space determining spirals for those fixed tangential end conditions. If theτ values had been sufficient
dense in[0,1], the elimination curves in Fig. 3 would have completely covered the entire figureexcept
for the viable region. The boundaries of the viable regions are composed of eliminations curves o
more common) envelopes of elimination curves.

In Fig. 4, ten viable regions,Vf (φ0, φ1) are shown for variousφ0 and φ1 values. The plot o
Vf (1.00,1.25) in Fig. 4 is not sufficiently large to visually detect the viable region (which is actually
empty in this case), so we use more accurate numerical routines. (For brevity, we omit further de
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Fig. 3. Elimination curves reveal theVf (π/4,π/3) viable region.

To collect the information contained in the plots of Fig. 4, a function can be defined which
(φ0, φ1) pairs to (f0, f1) pairs which determine cubic spirals. This is accomplished by using
interpolation scheme over an empirically derived table of(f0, f1) pairs such as that shown in Table
For this table, the (f0,f1) ordered pairs were chosen so that most of the table was filled by only
such ordered pairs. For example, since the viable regionVφ(0.8,0.2) is quite large, the ordered pa
(f0, f1) = (.8, .2) is a good ordered pair for use with many different(φ0, φ1) pairs. The viable region
Vφ(0.7,0.5), Vφ(0.6,0.5), andVφ(0.6,0.4) also cover many(φ0, φ1) pairs. Entries in Table 1 marke
NVR are for (φ0, φ1) pairs with no associated viable regions.2 An interpolant to the(f0, f1) values
in Table 1 can be defined piecewise over rectangles or triangles in(φ0, φ1) space to produce a simp
formula3 for selecting(f0, f1).

While the (f0, f1) parameters are simple algebraically, they do not provide direct informatio
how to match or approximate given curvature values at the end points, and we turn our attention
problem in the next section.

4. Suggesting ranges of K0 and K1 for given φ0 and φ1

We now consider the problem of finding useful approximations to the admissible set of en
curvatures of a cubic spiral. Unlikeφ0, φ1, f0, andf1, which uniquely determine a cubic, the four valu
φ0, φ1, K0, andK1 may determine 0, 1, 2, or 3 Bézier cubics (deBoor et al., 1987). We define an
type of viable region,VK(φ0, φ1), to be the set of points(K0,K1) with non-negative coordinates su

2 Although another table could be created with different(f0, f1) values, the positions of the NVR pairs would not chang
3 Note that the table could have been written in terms of cos(φ0) and cos(φ1) instead ofφ0 andφ1 to avoid unnecessar

calculation.
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Fig. 4.Vf (φ0, φ1) viable regions.

that there exists at least one cubic spiral with increasing curvature interpolating the valuesφ0, φ1, K0,
andK1 at the ends. Although we ultimately use numerical techniques to analyze this viable regi
begin with two analytic conditions which are necessary but not sufficient for points to lie inVK(φ0, φ1).

First, for some cubic spiral to satisfy given tangential and curvature end conditions, some spir
exist which satisfies those end conditions. From Theorem 3.18 in (Guggenheimer, 1963), ther
some convex spiral arc (not necessarily a parametric cubic) interpolatingb0, b3, φ0 ∈ (0, π/2), and
φ1 ∈ (0, π/2) with 0< K0 < K1 if and only if the circle of curvature atb0 contains the circle of curvatur
at b3, and 0< φ0 < φ1 < π/2. We have already imposed the latter condition by the assumptions



D.A. Dietz, B. Piper / Computer Aided Geometric Design 21 (2004) 165–180 171

,.2)
,.2)
,.2)
.2)
.2)

2)
)
5)
)

)

straint
raint to
to

in
inside

ich are

fy them.
t al.,
ily

a few
Table 1
Table off0 andf1 values for givenφ0 andφ1 values

φ0/φ1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5

.1 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8

.2 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8

.3 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8

.4 (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,

.5 (.8,.4) (.8,.4) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,

.6 (.7,.5) (.7,.5) (.7,.5) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.2) (.8,.

.7 (.6,.5) (.6,.5) (.7,.4) (.7,.3) (.7,.3) (.7,.3) (.7,.3) (.6,.2

.8 NVR (.6,.4) (.6,.4) (.55,.35) (.55,.3) (.55,.3) (.55,.2

.9 (.5,.4) (.5,.35) (.5,.3) (.5,.3) (.45,.25
1.0 NVR (.45,.32) (.43,.27) (.42,.24

Fig. 5. Circles of curvature atb0 andb3.

in Section 2. Using elementary geometry, the former condition is formulated by imposing one con
that is derived from the tangential contact of the two circles of curvature and a second const
ensure that the circle of curvature atb0 actually containsb3. (See Fig. 5.) These two constraints lead
the inequalities,

K1 >
2(1− cos(φ0 + φ1)) − 2K0 sin(φ1)

2sin(φ0) − K0
and K0 < 2sin(φ0). (6)

WhenK0 = 0 the condition is that the tangent line atb0 supports the circle of curvature atb3 and this
again leads to the left inequality in (6). For fixedφ0 andφ1, the inequalities in (6) describe a region
(K0,K1) space above a hyperbola. (An example is shown in the right-hand plot of Fig. 7.) Points
this region give end curvatures which can be met with an infinite number of spirals, none of wh
necessarily cubics.

Second, for a cubic spiral to satisfy curvature end conditions, some parametric cubic must satis
As noted previously,φ0, φ1, K0, andK1 may determine 0, 1, 2 or 3 cubics. This is shown in (deBoor e
1987) where results are derived on which values ofK0 andK1 admit cubic interpolants (not necessar
spirals) for given positional and tangential end conditions. We begin with these results and give
further details.
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Eqs. (4) and (5) show the relationship between(f0, f1) and(K0,K1). To analyze this relationship fo
a fixed(φ0, φ1), let

K̃0 = 1− f1

f 2
0

and K̃1 = 1− f0

f 2
1

, (7)

which are scaled versions of(K0,K1) independent of(φ0, φ1). The equations in (7) define a map fro
(0,1] × (0,1] in (f0, f1) space to(K̃0, K̃1) space that is neither one to one nor onto. To discover
it folds upon itself, the singularities can be found by setting the Jacobian of this map to zero
−3f1f0 + 4f1 + 4f0 − 4 = 0. This implicit curve in(0,1] × (0,1] can be parameterized as

(f0, f1) =
(

t,1− t

4− 3t

)
. (8)

The image of (8) under the map defined by the equations in (7) is given by

K̃0 = 1

4t − 3t2
and K̃1 = (4− 3t)2

16(1− t)
. (9)

This parametric curve actually has two pre-images in(0,1] × (0,1]. The first is, of course, the one give
in (8), and the second can be found using (7) and (9) to get

(f0, f1) =
(

−t + 2
√

2(t − t2),
4(t − 1+ √

2(t − t2))

4− 3t

)
. (10)

In (deBoor et al., 1987), it was shown in a diagram that the curve defined by (9) and the tw
K̃0 = 1 and K̃1 = 1 divide (K̃0, K̃1) space into regions with different multiplicities of solutions
prescribed curvatures at the endpoints. A similar diagram appears on the right side of Fig. 6 wher
in regionsA and B each have 1 corresponding cubic, points inE andD each have 2 correspondin

Fig. 6. Regions in(f0, f1) space map to regions in(K̃0, K̃1) space.
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cubics, and points in regionC have 3 corresponding cubics. The left side of the figure illustrates
curves defined by (8) and (10) together with the pre-images ofK̃0 = 1 andK̃1 = 1 under the map in (7).

These bounding curves in their respective spaces ((f0, f1) space and(K̃0, K̃1) space) help determin
which regions in each of the spaces map to each other in a one-to-one fashion. These regions ar
in Fig. 6. Each region matches with the one(s) in the other space with the same letter. For exam
restriction of the mapping given by (7) to regionC1 in (f0, f1) space gives a bijection to regionC in
(K̃0, K̃1) space. Similarly for regionsC2 andC3, so each point ofC has three corresponding pre-imag
in (f0, f1) space, one in each of the regionsC1,C2 andC3. Analogous statements can be made for regi
D1 andD2 each mapping ontoD and regionsE1 andE2 each mapping ontoE.

Guided by these two necessary conditions, we now turn to the numerical analysis of the su
conditions. We use the equations in (7) to map the elimination curves in(f0, f1) space into(K0,K1)

space. This is done using standard software routines to create a piecewise linear approximatio
(implicitly defined) elimination curves and thus sequences of points which may be mapped usi
The images are reconnected to get piecewise linear curves in(K0,K1) space which we callK-elimination
curves. An example of the resulting plot superimposed with bounding curves from an unscaled ver
Fig. 6 is in Fig. 7 where the lower black curve is the boundary of the region described by the ineq
in (6). The labels of the regions in Fig. 6 are used to discuss Fig. 7.

There are a few things to note in the plots in Fig. 7. The viable region,VK(0.2,0.7), includes the white
areas in regionsA andB. In those regions, each point represents a unique cubic, so a single K-elimi
curve through a point in regionsA andB indicates that the one cubic with thoseφ0, φ1, K0, andK1 end
conditions will not be a spiral. TheVK(0.2,0.7) viable region also contains area from regionC, because

Fig. 7. Plots ofVf (0.2,0.7) andVK(0.2,0.7).
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K-elimination curves passing throughC each eliminate at most one solution. Note that the regionC1

in the left plot of Fig. 7 is almost completely inVf (0.2,0.7), therefore regionC in the right plot must
have pre-images in regionC1 determining cubic spirals. However, since regionC2 does have elimination
curves passing through it, regionC will have K-elimination curves passing through it as well even tho
it is in VK(0.2,0.7). In fact, elimination curves appear in just small portions of the regionC3 in the left
plot of Fig. 7, but these also show up in regionC. Also, the same elimination curves which contribu
just a small portion to regionC3 in the left-hand plot also contribute just a small portion to regionB in
the left plot near the point(0,1). Those elimination curves map to K-elimination curves in the right
which appear as horizontal streaks nearK1 = 6 which pass through regionsB, C, andD. A similar effect
can also occur from elimination curves near(1,0) in (f0, f1) space.

Also, note that by (6), the end curvatures for spirals (not necessarily cubics) must lie above th
black curve in the right plot in Fig. 7. The viable region,VK(0.2,0.7), is a subset of the set of curvatur
that correspond to any spiral, and Fig. 7 shows which portions of regionsA andB are inVK(0.2,0.7).

Thus, for each(φ0, φ1), plots such as those shown in Fig. 7 reveal certain parts of the viable r
VK(φ0, φ1). These plots are time consuming to compute and difficult to interpret automatically. S
proceed by creating a collection of such plots for variousφ0 andφ1 values, extract information from
each, and store it for future use.

In a design environment, it would be useful to letK0 and K1 vary independently. This can b
accomplished if the viable region is approximated as one or more rectangles (with sides paralle
axes) in the viable region. See Figs. 8 and 9. Of course, not all the viable region will be captured
rectangles, but it does allowK0 andK1 to be chosen independently, each within specified ranges.

Fig. 8. Finding rectangles inVK(0.2,0.6).
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Fig. 9. Finding rectangles inVK(0.6,1.2).

We create rectangles only in regions of(K0,K1) space having unique cubic solutions. The region
(K0,K1) space that are omitted cause the portion of the viable region that is represented in the t
be disconnected. The omitted region may be important for some applications, but requires cons
more rectangles and a means of identifying which of potentially several possible cubics is need
particular pair of curvatures. We do not pursue the problem further in the present paper.

In Table 2, three rectangles (boxes I, II, and III) are listed for each tabulated(φ0, φ1) pair. Absence
of viable region, and hence rectangles is indicated with the letterx. For box I,K0 min is always zero.
Boxes II and III lie in regions wherẽK0 > 1 andK̃1 > 1, with box II not being above box III. Th
intent for these two rectangles is for box II to claim lowerK1 values and for box III to claim highe
K1 values. The reason for this is understood upon inspection of a typical(K0,K1) space viable region
plot, which becomes narrower asK1 grows. Fig. 9 is a plot ofVK(0.6,1.2). By interpolating rectangle
with corresponding box numbers, the viable region for(φ0, φ1) values which are between tabulat
values may be approximated as well. The(φ0, φ1) pairs from Table 1 which were marked as NV
will obviously not have boxes in Table 2. There are two additional(φ0, φ1) pairs, namely(0.8,0.9)

and (1.0,1.2), which are not given boxes. Their viable regions, which are in region A, are only
horizontal slivers.

Since we chose to find only about 300 rectangles, each with slightly different objectives,
simplest to suggest the rectangles manually and allow an algorithm to adjust the corners as
The corners of each (non-trivial) rectangle in Table 2 have been checked to ensure they lie
viable region. The interior and the sides of each rectangle are believed to also lie in the viable
based on visual inspection of each rectangle plotted with the images of elimination curves as in
and 9.
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Fig. 10. A CAD system could use the tables to see if the�K0 range overlaps with theK1 range.

Table 2
Table of rectangles in(K0,K1) space

Angles Box I Box II Box III

K0 K1 K0 K1 K0 K1

φ0 φ1 min max min max min max min max min max min max

.1 .2 0 .1 .72 .88 .155 .17 3 20 .16 .175 20 107

.1 .3 0 .075 1.6 2.23 .119 .15 7.4 18.6 .125 .165 20 106

.1 .4 0 .05 2.93 4.77 .101 .103 11.6 16.4 .105 .145 20 105

.1 .5 0 .05 4.85 7.65 .095 .12 15 20 .098 .125 20 105

.1 .6 0 .05 7 13 .09 .1 17 50 .095 .14 50 105

.1 .7 0 .05 10.9 18.1 .084 .1 29.2 44.8 .09 .13 50 9× 104

.1 .8 0 .04 14.2 23.8 .08 .09 30 50 .08 .12 50 104

.1 .9 0 .04 15 20 .08 .09 38 71 .08 .12 71 104

.1 1 0 .03 18.2 35.8 .08 .09 46 74 .08 .11 74 104

.1 1.1 0 .01 20.15 41.35 .074 .09 59.6 76.4 .08 .11 82 104

.1 1.2 0 .04 29 48 .072 .09 64.7 78.3 .073 .1 92.2 103

.1 1.3 0 .04 37.7 51.3 .07 .08 63 90 .07 .1 90 103

.1 1.4 x x x x .07 .08 67 100 .07 .1 100 103

.1 1.5 x x x x .07 .072 100 100 .07 .072 100 103

(continued on next page)
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Table 2 (Continued from Table 2)

Angles Box I Box II Box III

K0 K1 K0 K1 K0 K1

φ0 φ1 min max min max min max min max min max min max

.2 .3 0 .2 .75 .85 .35 .37 3 20 .36 .38 20 104

.2 .4 0 .15 1.2 1.6 .28 .35 6 20 .3 .35 20 104

.2 .5 0 .1 2 2.8 .24 .32 8 20 .26 .35 20 104

.2 .6 0 .1 3.1 3.9 .22 .3 10 20 .225 .33 20 104

.2 .7 0 .1 3.8 5.4 .2 .26 11 20 .220 .31 20 104

.2 .8 0 .1 5.2 6.8 .188 .26 14.6 19.4 .19 .27 20 104

.2 .9 0 .1 6.3 8.7 .177 .24 20.5 64.5 .175 .31 70 104

.2 1 0 .1 8 10.4 .17 .22 17 20 .17 .31 70 104

.2 1.1 0 .1 9.5 12 .165 .2 16 70 .165 .3 70 104

.2 1.2 x x x x .15 .19 17 70 .155 .28 70 104

.2 1.3 x x x x .142 .15 30.6 68.4 .145 .28 81 104

.2 1.4 x x x x .14 .18 30 65 .14 .28 65 104

.2 1.5 x x x x x x x x .135 .28 85 104

.3 .4 0 .4 1 1 .54 .56 3 20 .55 .57 20 104

.3 .5 0 .3 1.4 1.5 .449 .53 5.6 18.4 .47 .52 20 104

.3 .6 0 .25 1.93 2.17 .38 .5 6 20 .4 .5 20 104

.3 .7 0 .2 2.5 2.8 .344 .47 9.2 18.8 .345 .52 20 104

.3 .8 0 .2 3.24 3.56 .312 .42 8.3 18.7 .315 .5 25 104

.3 .9 0 .15 4 4.4 .28 .4 9 20 .285 .48 20 104

.3 1 x x x x .26 .37 10 20 .265 .46 20 104

.3 1.1 x x x x .25 .38 12 20 .245 .44 20 104

.3 1.2 x x x x .232 .34 11.9 19.1 .235 .42 20 104

.3 1.3 x x x x .22 .33 13 64 .22 .48 64 104

.3 1.4 x x x x .2 .3 16 78 .25 .48 78 104

.3 1.5 x x x x .2 .28 18.5 70 .2 .48 70 104

.4 .5 x x x x .694 .71 5.2 16.3 x x x x

.4 .6 x x x x .58 .71 3.4 20 .6 .7 20 104

.4 .7 x x x x .5 .7 6 20 .55 .7 20 104

.4 .8 x x x x .44 .63 6 20 .47 .69 20 104

.4 .9 x x x x .4 .62 8 20 .45 .7 20 104

.4 1 x x x x .37 .55 9.2 18.8 .39 .65 20 104

.4 1.1 x x x x .343 .55 9.2 18.8 .35 .66 20 104

.4 1.2 x x x x .3 .5 8 20 .33 .64 20 104

.4 1.3 x x x x .28 .5 10 88 .285 .66 88 104

.4 1.4 x x x x .265 .5 12 80 .28 .7 80 104

.4 1.5 x x x x .24 .45 14 20 .26 .58 20 104

.5 .6 x x x x .8 .86 1.6 2.2 x x x x

.5 .7 x x x x .68 .78 2 20 .69 .75 20 104

.5 .8 x x x x .58 .8 3 20 .6 .76 20 100

.5 .9 x x x x .53 .8 6.5 18.5 .53 .75 20 100

.5 1 x x x x .450 .750 6 20 .470 .770 20 100

.5 1.1 x x x x .430 .7 9.2 18.8 .410 .820 20 100

.5 1.2 x x x x .370 .750 8 20 .370 .830 20 100
(continued on next page)



178 D.A. Dietz, B. Piper / Computer Aided Geometric Design 21 (2004) 165–180

10

50

0

cubics.
rom end
Table 2 (Continued from Table 2)

Angles Box I Box II Box III

K0 K1 K0 K1 K0 K1

φ0 φ1 min max min max min max min max min max min max

.5 1.3 x x x x .330 .7 8 20 .350 .8 20 100

.5 1.4 x x x x .3 .6 9 20 .310 .8 20 200

.5 1.5 x x x x .290 .640 11 20 .3 .8 20 200

.6 .7 x x x x .950 1 1.9 1.950 x x x x

.6 .8 x x x x .750 .9 2 3.5 .770 .960 2.250 3.8

.6 .9 x x x x .650 .9 3 7.5 .660 .880 2.830 8.6

.6 1 x x x x .570 .850 4.8 16 .6 .730 16 36

.6 1.1 x x x x .510 .850 5 20 .560 .710 20 100

.6 1.2 x x x x .470 .870 6.5 20 .510 .770 20 100

.6 1.3 x x x x .450 .850 7 20 .470 .810 20 100

.6 1.4 x x x x .420 .8 7 20 .450 .840 20 100

.6 1.5 x x x x .4 .8 9 20 .450 .850 20 100

.7 .8 x x x x 1.1 1.150 1.9 1.950 1.1 1.150 1.9 1.9

.7 .9 x x x x .9 1.1 2.2 3 .9 1.1 2.2 3

.7 1 x x x x .8 1 2.5 4.4 .8 1 2.5 4.4

.7 1.1 x x x x .7 1 4 6 .710 1 4 6

.7 1.2 x x x x .650 .9 4 9 .650 .9 4 9

.7 1.3 x x x x .6 .9 5 12 .6 .9 5 12

.7 1.4 x x x x .6 .750 5 20 .6 .750 5 20

.7 1.5 x x x x .560 .8 6 20 .6 .8 20 28

.8 .9 x x x x x x x x x x x x

.8 1 x x x x .9 1.1 2.080 2.180 x x x x

.8 1.1 x x x x .9 1.1 2.7 3.6 .9 1.1 2.6 3

.8 1.2 x x x x .8 1 3 4.8 .8 1.1 3.7 4.5

.8 1.3 x x x x .750 1.1 4 6 .8 1.1 4.1 6

.8 1.4 x x x x .7 1 5 8 .7 1 5 8

.8 1.5 x x x x .7 1 6 9 .7 1 6 9

.9 1 x x x x x x x x x x x x

.9 1.1 x x x x x x x x x x x x

.9 1.2 x x x x .970 1.2 2.8 3.1 x x x x

.9 1.3 x x x x .9 1.1 3.2 4 x x x x

.9 1.4 x x x x .8 1 3.8 4.6 .8 1 4.1 4.46

.9 1.5 x x x x .750 1 4.6 5.6 .8 1 4.840 6
1 1.1 x x x x x x x x x x x x
1 1.2 x x x x x x x x x x x x
1 1.3 x x x x x x x x x x x x
1 1.4 x x x x 1.020 1.1 3.4 3.450 x x x x
1 1.5 x x x x .9 1 3.7 3.8 x x x x

5. Conclusions and applications

We have presented tools that can be used to help automatically select control points for Bézier
For example, the piecewise interpolant discussed in Section 3 can be used to give control points f
conditions that specify given points and tangent directions. The control points produced from thef0 and
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f1 values are heuristically good choices in regards to monotonic curvature and if no other informa
constraints are available, they could be used directly when they apply. In a design system, Table
be extended to angle pairs that do not admit a spiral cubic. For such angle pairs,f0, f1 values would have
to be chosen based on other considerations. It may actually be desirable in a design system to
such an extended table with a more compact formula that approximates its entries, but the de
determining this table and deriving such a formula is beyond the scope of the present paper.

As an example of how a CAD system could use the information provided by Table 2, consid
following problem (Fig. 10). Given three points inR2 and their tangent angles, can two cubic spirals
fit with overall curvature continuity? The join point may be a local extrema of curvature (as in Fig
or it may not, but in either case we wish to join two spirals with matching tangent vector and cont
(non-specified) curvature. For the two points and tangents on the left side of the figure, a linea
(equal to the inverse of the length of the left-hand chord) is applied to each of the three boxes in
for a left (φ0, φ1) pair. This gives bounds onK0 andK1 for the left piece of the problem and simil
bounds may be found for the right piece of the problem. If there is any overlap inK1 values allowed for
the left piece of the problem andK0 values allowed for the right piece of the problem, a solution to
original problem is possible. This is shown in Fig. 10 with two(K0,K1) boxes. These boxes represe
scaled forms of the boxes from Table 2. A join is possible if the rangeK1 overlaps the range�K0 and in
this case, the curvatures at the outer ends,K0 and �K1, are still free to move independently in the giv
ranges. Since the boxes are presented for increasing curvature, different variations of the prob
require using theK0 andK1 from the table in the appropriate order.

The tools presented in this paper only apply to cubics, and only address the issue of mo
curvature. Future work may try to create similar tools for other classes of curves.
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