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Abstract 

This article will cover the use of some basic three-dimensional manipulatives, such as balloons 
and paper polyhedra, which can enhance undergraduate exploration of non-euclidean geometry.  Students' 
intuition of non-euclidean spaces is strengthened, and their enjoyment of the subject is augmented by 
teamwork in a laboratory-style setting.  Copies of sample laboratories and manipulatives are available 
through the author's website or by email from the author.  
______________________________________________________________________

1. Introduction

Students in my Spring 2004 undergraduate geometry course, Modern Geometry I, were having 
trouble absorbing geometric concepts in a traditionally-styled lecture.  Most of these students were math 
or computer science majors who had taken calculus, and many of them were also secondary education 
majors.  The first examination results demonstrated a lack of learning and a discussion with the students 
revealed a deepening dislike for the subject area, so I decided to take a more hands-on approach for 
teaching this course and started giving them group work in the form of laboratories relying heavily on 
three-dimensional manipulatives.  The second examination results and the students' feedback both 
indicated that this approach was much more effective at cultivating both enjoyment of and deeper 
understanding of the subject matter.  The sections which follow summarize the various laboratories which 
were completed by the students.  

I highly recommend experimenting with the laboratories in addition to or in lieu of reading this 
document for those interested in learning more about non-euclidean geometry.  This document is intended 
for those interested in collecting ideas for teaching the topic but fails to reflect the curiosity and 
exploratory tone of the laboratory environment.

2. Triangles on an elliptic surface

The objectives were: 
1) Demonstrate to the students that the sum of angles on a sphere is more than 180 degrees.
2) Get students thinking about what a straight line is.
3) Convince students that areas of the triangles on the sphere have something to do with the sum of the     
    degrees.

Students were each individually given a length and two angular measurements and were told to 
draw the appropriate triangle on a balloon using a ruler and a protractor.  Rulers from Lenart spheres were 
used as a guide to help make all the balloons about the same size, and students were asked to draw the 
triangle on the most sphere-like portion of the balloon.  As an interesting note, they all drew geodesics 
instinctively, without any discussion about what geodesics were.  They were then told to estimate the area 
of their triangle using the familiar plane formula.  Answers for all students were tabulated on the board.



This laboratory took one class hour, and some assistance was given.  The results of the 
laboratory were encouraging, even though the plane formula for the triangle's area is rather inaccurate for 
many triangles on the sphere.  Getting accurate measurements on a balloon also proved to be tricky, but 
the students were mature enough to understand the drawbacks of the tools being used.  

3. Areas of triangles on an elliptic surface

The objectives were:
1) Students should recall or learn that the area of the sphere is 4π 2R .
2) Students learn that a triangle on a sphere arises from three great circles.
3) Derive formula for area of triangle on sphere.
4) Generalize formula for area of triangle on sphere to area of any polygon on sphere.
5) Remove dependence on number of sides in polygon from formula for area of polygon on sphere. 

                Students were again given balloons to work with, 
pretending the balloons to be perfect spheres.  They were asked to 
first draw two different great circles on their balloons and find the 
proportion of the area of the whole sphere contained in each of the 
lunes formed.  The eight resulting angles were labeled as a or a', 
with a and a' being supplementary angles.  Next, they were walked 
through a proof of the formula for the surface area of the sphere. 
(Most of the students had difficulty with this part of the laboratory.) 
This picture shows a styrofoam model of the eight triangles the 
students drew on their balloons.

Next, a third great circle was drawn so as to split each of the four lunes into two triangles. 
Resulting angles were labeled as b, b', c, and c', with b and b' (and c and c') being supplements and so that 
one triangle would have the angles a, b, and c.  The eight resulting areas have for different area measures, 
so the sections were labeled A, B, C, and D so that areas of same area had the same label, and the triangle 
with the angles a, b, and c was labeled A. (Different labels will be suggested next time, as students had 
quite a bit of trouble distinguishing the small lowercase letters from one another as the balloon was 
rotated.  A lesser amount of frustration resulted from the use of the capital letters matching the lowercase 
letters.)  Now, knowing how to calculate the surface area of a lune and the surface area of a hemisphere 
allowed for algebraic manipulations to solve for A in terms of a, b, and c. (A and B , A and C, and A and 
D each form lunes.)  Students found that A = 4 (a + b + c -π ) 2R  where R is the radius of the sphere.

This result for the area of triangles on a sphere was extended to find the area of any convex 
polygon on a sphere, using induction.  Finally, dependence upon the number of sides in the polygon was 
removed by measuring the supplements of the internal angles (called turning angles or angles of  
deflection) rather than the internal angles.  This final formulation could be slightly altered to achieve a 
continuous representation of this result.

This laboratory took about two to three class hours and required much more assistance than the 
first laboratory.  The results of this laboratory were good, but it would have been more effective to have it 
split into two laboratories rather than one two or three class hour laboratory.  Students sometimes became 
discouraged with their lack of progress on a laboratory that would span over two or three class hours. 
After the first time this occurred, however, they did not mind as much.  

4. Cone points

The objectives were:
1) Students create models of hyperbolic and elliptic cone points.
2) Students learn that adding (removing) angles at the cone points
     causes the triangle's internal angle sum to decrease (increase)
     by the amount of the added (removed) angle.  



Students were shown samples of elliptic and hyperbolic cone points made from paper with 
equilateral triangular gridlines, and they were given materials to make their own.  There was a classroom 
discussion about what was or was not developable, and a working definition was given that "a 
developable surface can be made out of paper".  Students drew triangles (three intersecting geodesics) on 
the models and found the sum of the angles in them.  They realized that any angles which they added to 
their models to create hyperbolic cone points would decrease the sum of the triangle's interior angles, but 
that any angles they removed from their models to create elliptic cone points would increase the sum of 
the triangle's interior angles.  

           This laboratory was completed in one class hour with 
some assistance.  Results of this laboratory were as expected, 
and the students enjoyed the exercise. 

5. Total Gaussian curvature on various polyhedra

The objectives were:
1) Students learn that the sum of the angle deficits for a convex polyhedron is 4π .
2) Students learn that even for an object with hyperbolic cone points, the angle deficits formed by the
    introducing the hyperbolic cone points are balanced out by the elliptic cone points which also must 
    arise.

Various regular convex paper polyhedra such as a tetrahedron, cube, trunctetrahedron, snubcube 
(shown below), and one paper bathtub-like shape were given to the students pre-assembled as well as in 
flat pattern format (as shown below).  Students were asked to calculate the angle deficit for each cone 
point in each object.  They added up the angle deficit for each object and found that they all totaled 4π  
radians.

This laboratory was completed in one class hour with some assistance.  Results of this laboratory 
were as expected, and the students enjoyed the exercise.  Some students asked for a proof of the fact that 
this type of object would always have an angle deficit of  4π  radians, indicating that they were ready to 
be presented with the proof!

6. Proof of total curvature for polyhedra 

The objectives were:
1) Learn about Euler characteristics.



2) Prove that the total Gauss curvature of a topologically spherical object composed of polygons is 4π .

A model of a 'square donut' was provided, that is, a cube with a square 'tunnel' through it.  The 
two outer faces with missing squares were split in half along the diagonal so that the object had 12 faces, 
each topologically equivalent to a disc.  Students found that the total Gaussian curvature for this object 
was zero.  

Next, the Euler characteristic, or efv −+=χ  (where v represents the number of vertices in 
the object, f represents the number of faces in the object, and e represents the number of edges in the 
object) was considered for triangular tessellations of surfaces of topologically spherical objects. The 
proof started with a planar case, where the Euler characteristic is one and moved to the spherical case 
(where it is two)  by adding one additional face.  (No proof was investigated for objects topologically 
equivalent to a torus.)  The Euler characteristic, the total radians in a planar triangle, and some additional 
clues were given to the students, who were then able to arrive at the result that for any topologically 
spherical object composed of polygons, the total Gauss curvature is 4π , which is 'coincidentally' also 
the surface area of a unit sphere.  

This laboratory was completed in two to three class hours with considerable assistance.  The 
results of this laboratory varied greatly by student.  Many students understood the entire laboratory 
completely, but many students were (unfortunately) satisfied to believe the results and borrow work from 
their classmates.  

7.  Gauss-Bonnet Theorem

The objectives were:
1) Learn that the sum of angle deficits within a curve on a polyhedron and angle defects on the curve is 
    2π  (Gauss-Bonnet theorem).
2) Cause students to suspect that this result holds for non-polyhedral surfaces as well.  

First, students were asked to draw a straight line on a piece of paper and observe the line as the 
paper was distorted into a cone or cylinder or other arrangement.  Next, photographs of an 
icosidodecahedron with closed curves drawn on it were provided in the laboratory (for which the model 
was available at the front of the room). In the first photograph, the closed curve encircled only one elliptic 
cone point, for which the students calculated the angle deficit.  For regular polyhedra, it is convenient to 
create closed curves by connecting the centers of adjacent faces.  The closed curves so created will often 
cross an edge between faces perpendicularly to the edge, making it easy to conclude that the path is 
indeed a geodesic.  Students were able to figure out the total turning angle for the closed curve on the 
icosidodecahedron.  The second photograph showed a triangle drawn on an icosidodecahedron. The 
internal angles for that triangle were labeled for the students.  From this, they were able to find the total 
turning angle for the curve, and deduce the angle deficit at each of the three identical cone points 
enclosed by the curve.  This result matched their previous results for the same polyhedron.  A third 
photograph gave a closed pentagon-like curve on a truncated icosahedron.  Analogous values were 
calculated for this shape as for the icosidodecahedron.

Students were given photos of three objects (a sphere, a cylinder, and a star-like object) each 
encircled with curves (ribbons) lying flat along their surfaces.  They correctly concluded that the total 
Gauss curvature enclosed by either side of the curve must be 2π  since each curve experienced no 
angular deflection.  Details on the geometry of the star-like object were given to students so they could 
verify the result using techniques from previous laboratories.  Finally, students were given diagrams 
representing surfaces and were asked to use algebra with the Gauss-Bonnet theorem to find missing 
information such as the Gauss curvature at a single point. 



This laboratory was completed in two to three class hours with considerable assistance.   The 
results of this laboratory were mostly positive, but some students could have used more time on the 
laboratory.  

8. Examination

The examination for this sequence of laboratory exercises relied heavily on the use of digital 
photographs, some of which were taken directly from the laboratory exercises.  Students were given a 
review sheet which highlighted some of the concepts they would be responsible for.  The examination 
emphasized later material more than earlier material and did not emphasize supplemental material, such 
as the proof for the surface area of the sphere.  Objects which appeared in the examination as photographs 
were available at the front of the room for students to borrow during the examination.

9.  Conclusions

After reviewing the students' examination results, reflecting on their verbal responses, and 
considering their overall attitudes about geometry, I have to conclude that the course was much more 
successful after introducing hands-on laboratories.  Another important change which contributed to the 
improved results was that I decided to cover less material but cover material more deeply, so the students 
would have the chance to think over more important concepts for longer periods of time.  It seems that 
even with a decreased emphasis on covering material, more material is being absorbed.  The most 
important change to report is that my students literally went from 'hating' geometry to saying that they 
looked forward to the class and were enjoying the material. 

Acknowledgements

I wish to thank my colleague, Howard Iseri, and my husband, Michael Robinson, both of whom 
have been indispensable to me in this endeavor, both by their encouragement and by their helping me 
formulate geometric ideas clearly and accurately.

References

Paul Bourke and Matt Storz, website with patterns for paper polyhedra, Swinburne Centre for 
Astrophysics and  Supercomputing, Melbourne, Australia.
http://astronomy.swin.edu.au/~pbourke/polyhedra/polycuts/

David Henderson, website with patterns for equilateral triangular grid paper, Cornell University, Ithaca,
NY. 
http://www.math.cornell.edu/~dwh/books/eg00/supplements/39c0d5b7.jpg


